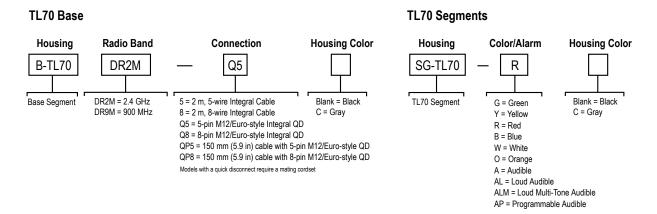
TL70 Wireless MultiHop Modular Tower Light

Datasheet

The Sure Cross® TL70 Wireless MultiHop Modular Tower Light combines the best of Banner's popular Tower Light family with its reliable, field-proven, Sure Cross wireless MultiHop architecture.

- Available in 900 MHz and 2.4 GHz ISM radio frequencies
- · Up to six colors, or five colors plus audible, in one device
- Rugged, water-resistant IP65 housing with UV-stabilized material
- Bright, uniform indicator segments appear gray when off to eliminate false indication from ambient light
- Two-way communication light segments can be controlled with the input wires or the master radio

Important: Please download the complete TL70 Wireless MultiHop Modular Tower Light technical documentation, available in multiple languages, from www.bannerengineering.com for details on the proper use, applications, Warnings, and installation instructions of this device.



Important: Por favor descargue desde www.bannerengineering.com toda la documentación técnica de los TL70 Wireless MultiHop Modular Tower Light, disponibles en múltiples idiomas, para detalles del uso adecuado, aplicaciones, advertencias, y las instrucciones de instalación de estos dispositivos.

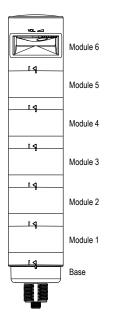
Important: Veuillez télécharger la documentation technique complète des TL70 Wireless MultiHop Modular Tower Light sur notre site www.bannerengineering.com pour les détails sur leur utilisation correcte, les applications, les notes de sécurité et les instructions de montage.

Models

Select the 5-pin base for tower light configurations of up to three modules. Select the 8-pin base for tower light configurations of up to six modules, or when the event counter will be enabled.

- Example base model number: B-TL70DR2M-Q5
- Example light segment model number: SG-TL70-G
- Example audible segment model number: SG-TL70-A

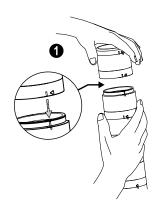
TL70 Pre-Assembled Models Color/Position Housing Radio Band Audible Alarm* **Housing Color** Connection TL70 DR2M G 0 Q В DR2M = 2.4 GHz Blank = None Blank = None Blank = Black Blank = 2 m Integral Cable DR9M = 900 MHzG = Green A = Audible C = Gray Q = M12/Euro-style Integral QD AL = Loud Audible Y = Yellow QP = 150 mm (5.9 in) cable with M12/Euro-style QD R = Red AP = Programmable Audible Models with a quick disconnect require a mating cordset B = Blue * not available with six-light modules W = White O = Orange

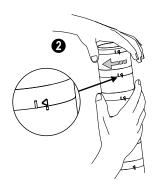


Original Document 195287 Rev. G • Example pre-assembled model number: TL70DR2MGYRAQ

Configuring the Modules

Turn on the appropriate DIP switch to set the order of the components, counting up from the tower light's base.




Assembly Options		DIP Switches							
Assembly	Options	1	2	3	4	5	6	7	8
	Module 1	ON							
	Module 2		ON						
Light and Standard Audible Components	Module 3			ON					
	Module 4				ON				
	Module 5					ON			
	Module 6						ON		
	3 Hz							ON	OFF
Light Module Flash Rate	1.5 Hz							ON	ON
hate	Solid On*							OFF	OFF
	Pulse 1.5 Hz							ON	OFF
Standard Audible	Chirp Alarm							ON	ON
Module Settings	Siren Alarm							OFF	ON
	Continuous Alarm*							OFF	OFF

Assembly Options		DIP Switches									
Assembly	Options	1	2	3	4	5	6	7	8	9	10
	Pulse 1.5 Hz							ON	OFF		
	Chirp Alarm							ON	ON		
	Siren Alarm							OFF	ON		
Loud Audible	Continuous Alarm*							OFF	OFF		
Module Settings	Low Intensity*									OFF	OFF
	Med. Intensity									ON	OFF
	Med./Loud Intensity									OFF	ON
	Loud Intensity									ON	ON

^{*} Factory default setting

Assembling the Modules

To assemble the modules:

- Align the notches on each module and press together.
 Rotate the top module clockwise to lock into place (notches shown in the locked position).

Wiring Diagrams

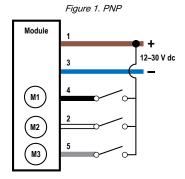
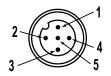



Figure 2. 5-pin M12 Male Pinouts

Key

1 = brown

2 = white 3 = blue

4 = black

5 = gray

M1 = Module 1

M2 = Module 2

M3 = Module 3

Figure 3. PNP

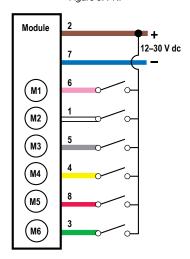
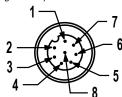



Figure 4. 8-pin M12 Male Pinouts

Key

1 = white

2 = brown

3 = green

4 = yellow

5 = gray

6 = pink

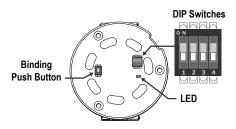
7 = blue 8 = red

M1 = Module 1

M2 = Module 2

M3 = Module 3

M4 = Module 4


M5 = Module 5 M6 = Module 6

Input wires M1 through M6 can be used to either control the light segments or can be configured as external PNP Inputs. Refer to the DIP switch settings for configuration instructions.

Configuring the Radio Module

Set the Radio Module DIP Switches

Before applying power to the device, set the radio module's DIP switches. Default configurations are noted with (*).

Double Cottings	DIP Switches						
Device Settings	1	2	3	4			
Transmit power 900 MHz radios: 1.00 Watt (30 dBm) 2.4 GHz radios: 0.065 Watts (18 dBm) and 60 ms frame	OFF*						
Transmit power 900 MHz radios: 0.25 Watts (24 dBm) 2.4 GHz radios: 0.065 Watts (18 dBm) and 40 ms frame	ON						
Input wires control light segments		OFF *					
Disables wired input control of light segments and converts wires to auxiliary Inputs		ON					
MultiHop radio setting: Slave			OFF *				
MultiHop radio setting: Repeater			ON				

Device Settings	DIP Switches					
Device Settings	1	2	3	4		
Reserved				OFF *		

Transmit Power Levels/Frame Size

The 900 MHz data radios can be operated at 1 watt (30 dBm) or 0.250 watt (24 dBm). For most models, the default transmit power is 1 watt.

For 2.4 GHz radios, the transmit power is fixed at 0.065 watt (18 dBm) and DIP switch 5 is used to set the frame timing. The default position (OFF) sets the frame timing to 60 milliseconds. To increase throughout, set the frame timing to 40 milliseconds. For battery-powered devices, increasing

Important: Prior to date code 15341 and radio firmware version 3.6, the frame timing was 40 ms (OFF) or 20 ms (ON).

MultiHop Radio Overview

MultiHop networks are made up of one master radio and many repeater and slave radios.

The MultiHop networks are self-forming and self-healing networks constructed around a parent-child communication relationship. A MultiHop Radio is either a master radio, a repeater radio, or a slave radio.

- The master radio controls the overall wireless network.
- The repeater radios extend the range of the wireless network.
- The slave radios are the end point of the wireless network.

At the root of the wireless network is the master radio. All repeater or slave radios within range of the master radio connect as children of the master radio, which serves as their parent. After repeater radios synchronize to the master radio, additional radios within range of the repeater can join the network. The radios that synchronize to the repeater radio form the same parent/child relationship the repeater has with the master radio: the repeater is the parent and the new radios are children of the repeater. The network formation continues to build the hierarchical structure until all MultiHop radios connect to a parent radio. A MultiHop radio can only have one designated parent radio. If a radio loses synchronization to the wireless network it may reconnect to the network through a different parent radio.

For the simple example network shown below, the following relationships exist:

- Radio 1 is the master radio and is parent to radio 2 (repeater).
- Radio 2 (repeater) is child to radio 1 (master), but is parent to radios 3 (slave) and 4 (repeater). Radio 4 (repeater) is child to radio 2 (repeater), but is parent to radios 5 and 6 (both slaves).

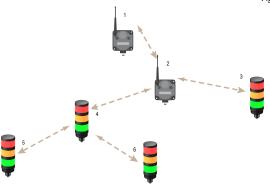
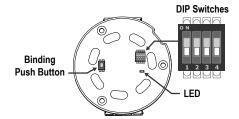


Figure 5. MultiHop radio network


On the LCD of each device, the parent device address (PADR) and local device address (DADR) are shown.

MultiHop Master Radio. Within a network of MultiHop data radios, there is only one master radio. The master radio controls the overall timing of the network and is always the parent device for other MultiHop radios. The host system connects to this master radio.

MultiHop Repeater Radio. When a MultiHop radio is set to repeater mode, it acts as both a parent and a child. The repeater receives data packets from its parent, then re-transmits the data packet to the children within the repeater's network. The incoming packet of information is re-transmitted on both the radio link and the local serial link.

MultiHop Slave Radio. The slave radio is the end device of the MultiHop radio network. A radio in slave mode does not re-transmit the data packet on the radio link, only on the local serial (wired) bus.

Bind the TL70 Wireless MultiHop Modular Tower Light to Form Networks

Binding MultiHop radios ensures all MultiHop radios within a network communicate only with other radios within the same network. The MultiHop radio master automatically generates a unique binding code when the radio master enters binding mode. This code is then transmitted to all radios within range that are also in binding mode. After a repeater/slave is bound, the repeater/slave radio accepts data only from the master to which it is bound. The binding code defines the network, and all radios within a network must use the same binding code.

Before using the TL70 devices, you must bind them to the MultiHop master radio and assign a device ID using the master's rotary dials. There are no physical switches or dials on the TL70 radio. To bind and address an TL70, follow these steps.

On the MultiHop Master Radio

- 1. Apply power to the master radio.
- 2. Triple click button 2 to enter binding mode. For the two LED/button models, both LEDs flash red and the LCD shows *BINDNG and *MASTER. For single LED/button models, the LED flashes alternatively red and green.
- 3. Using the rotary dials, select the Device ID to assign to the TL70. Use the left rotary dial for the left digit and the right rotary dial for the right digit. For example, to assign your TL70 to Device ID 10, set the left dial to 1 and the right dial to 0.

On the TL70 Wireless MultiHop Modular Tower Light

- 1. Click the button on TL70 three times to place the TL70 into binding mode. After entering binding mode, the TL70 LEDs blink slowly, alternating between red and green. After the TL70 receives a valid binding code from the MultiHop Master Radio, the red and green LEDs are both illuminated continuously, resulting in a slightly orange light. The red and green LEDs simultaneously flash four times to indicate that the TL70 accepts the binding code. The TL70 enters RUN mode.
- 2. After binding the TL70 to the MultiHop Master Radio and assigning it a unique Device ID, write the Device ID on the TL70's label.
- 3. Repeat this sequence (TL70 steps 1 and 2) for as many TL70s as you need to bind. If two TL70s are accidentally assigned the same Device ID, rerun the binding procedure on one of the TL70s to reassign the ID. The binding sequence may be run on a TL70 as many times as necessary.

On the MultiHop Master Radio

1. To exit binding mode, double click button 2 on the MultiHop master radio. The master radio reboots and enters RUN mode.

Slave and Repeater TL70 Wireless MultiHop LED Behavior

All bound radios set to slave or repeater modes follow this LED behavior after powering up.

Process Steps	Response	LED
1	Apply power to the radio	Solid red and green (orange) for 8 seconds
2	The slave/repeater searches for a parent device.	Flashes red
3	A parent device is detected. The slave/repeater searches for other parent radios within range.	Solid red
4	The slave/repeater selects a suitable parent.	Solid red and green (orange)
5	The slave/repeater attempts to synchronize to the selected parent.	Solid red
6	The slave/repeater enters RUN mode.	Solid green, then flashes green
7	The slave/repeater is synchronized to the parent.	Flashes green
	Serial data packets begin transmitting between the slave/repeater and its parent radio.	Flashes red and green (orange)

MultiHop Configuration Software

Use Banner's MultiHop Configuration Software to view your MultiHop radio network and configure the radio and its I/O.

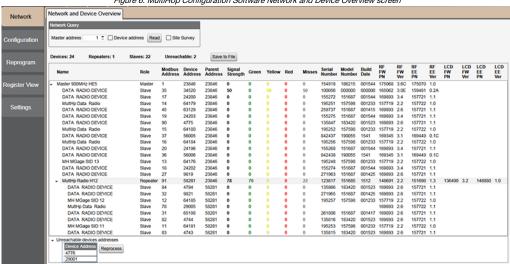


Figure 6. MultiHop Configuration Software Network and Device Overview screen

The software connects to a MultiHop master radio using one of four methods.

- Serial; using a USB to RS-485 (for RS-485 radios) or a USB to RS-232 (for RS-232 radios) converter cable.

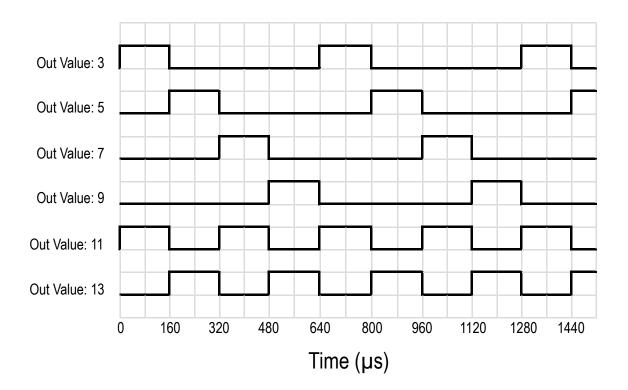
- Modbus TCP; using an Ethernet connection to an Ethernet radio master.

 Serial DXM; using a USB cable to a DXM Controller to access a MultiHop master radio.

 TCP DXM: using an Ethernet connection to a DXM Controller to access a MultiHop master radio.

For MultiHop DX80DR9* models, Banner recommends using BWA-UCT-900, an RS-485 to USB adapter cable with a wall plug that can power your 900 MHz 1 Watt MultiHop radio while you configure it. The adapter cable is not required when connecting to a DXM Controller.

Download the most recent software revision from the Wireless Reference Library on Banner Engineering's website: www.bannerengineering.com.


Modbus Registers

Modbus Holding Register (4xxxx)	I/O Type	I/O Range		Holding Register Representation (Dec.)		Module #
		Min.	Max.	Min.	Max.	
1	Discrete IN 1	0	1	0	1	M1
2	Discrete IN 2	0	1	0	1	M2
3	Discrete IN 3	0	1	0	1	M3
4	Discrete IN 4	0	1	0	1	M4
5	Discrete IN 5	0	1	0	1	M5
6	Discrete IN 6	0	1	0	1	M6
501	Light OUT 1	0	65535	0	65535	M1
502	Light OUT 2	0	65535	0	65535	M2
503	Light OUT 3	0	65535	0	65535	M3
504	Light OUT 4	0	65535	0	65535	M4
505	Light OUT 5	0	65535	0	65535	M5
506	Light OUT 6	0	65535	0	65535	M6

Flash Pattern

Write specific values to the light OUT registers to control the light's behavior.

Light OUT Register Value	Light Operation
1	On
3	Flashing at 1.5 Hz
5	Delay of 160 μs, then flashing at 1.5 Hz
7	Delay of 320 µs, then flashing at 1.5 Hz
9	Delay of 480 µs, then flashing at 1.5 Hz
11	Flashing at 3 Hz
13	Delay of 160 μs, then flashing at 3 Hz

Example -- Lights Racing Up the Stack
To program all four lights to come on at a different time to appear to race up the light stack, write a 3 to M1, 5 to M2, 7 to M3, and a 9 to M4.

Specifications

Tower Light Specifications

Supply Voltage and Current

12 V DC to 30 V DC (Outside the USA: 12 V DC to 24 V DC, ± 10%)
900 MHz Consumption: Maximum current draw is < 40 mA and typical current draw is < 30 mA at 24 V DC. (2.4 GHz consumption is less.)

Indicator Color or Audible Model	Maximum	Current (mA)
Indicator Color of Addible Model	at 12 V DC	at 30 V DC
Blue, Green, White	420	150
Red, Yellow, Orange	285	120
Standard Audible	30	30
Loud Audible (Intensity 1)	18	14
Loud Audible (Intensity 2)	40	28
Loud Audible (Intensity 3)	160	70
Loud Audible (Intensity 4)	350	110

Supply Protection Circuitry
Protected against transient voltages

Indicators

To 6 colors depending on model (Green, Red, Yellow, Blue, White, and Orange) LEDs are independently selected Flash Rates: 1.5 Hz ±10% and 3 Hz ±10%

Indicator Response Time
Off Response: 150 μs (maximum) at 12 V DC to 30 V DC
On Response: 180 ms (maximum) at 12 V DC; 50 ms (maximum) at 30 V DC

Indicator Characteristics

Color	Dominant Wavelength (nm) or Color Temperature (CCT)	Color Co	oordinates ²	Lumen Output (Typical at	
	Color Temperature (CCT)		у	25 °C)	
Green	525 nm	-	-	92	
Red	625 nm	-	-	40	
Yellow	590 nm	-	-	22	
Blue	470 nm	-	-	32	
White	5000 K	-	-	125	
Orange	-	0.66	0.33	33	

Operating Conditions

 $-40~^{\circ}\text{C}$ to $+50~^{\circ}\text{C}$ ($-40~^{\circ}\text{F}$ to $+122~^{\circ}\text{F}$) 95% at $+50~^{\circ}\text{C}$ maximum relative humidity (non-condensing)

Environmental Rating

Certifications

Banner Engineering Europe Park Lane, Culliganlaan 2F bus 3, 1831 Diegem, BELGIUM

(CE approval only applies to 2.4 GHz models)

Standard Audible: 2.6 KHz ± 250 Hz oscillation frequency; maximum intensity (typical)

92 dB at 1 m (3.3 ft) **Loud Audible:** 2.6 KHz ± 250 Hz oscillation frequency; maximum intensity (typical) at 1

DIP	Switches	Max Intensity (Loud Audible)
9	10	
ON	ON	Intensity 4: 101 dB
OFF	ON	Intensity 3: 99 dB
ON	OFF	Intensity 2: 92 dB
OFF	OFF	Intensity 1: 85 dB

Construction

Bases, Segments, Covers: polycarbonate

Audible Adjustment

Standard Audible Adjustment: Rotate the cover until the desired volume is reached Loud Audible Electronic Adjustment: Select the desired volume using DIP switches 9

Typical Reduction in Sound Intensity with Audible Adjustment (maximum to minimum):

Standard Audible: 8 dB Loud Audible: 16 dB

Connections

5-pin M12/Euro-style quick disconnect, 8-pin M12/Euro-style quick disconnect, 150 mm (5.9 in) PVC cable with an M12/Euro-style quick disconnect, or 2 m (6.5 ft) unterminated cable, depending on model

Vibration and Mechanical Shock
Vibration: 10 Hz to 55 Hz, 0.5 mm peak-to-peak amplitude per IEC 60068-2-6
Shock: 15G 11 ms duration, half sine wave per IEC 60068-2-27

Required Overcurrent Protection

WARNING: Electrical connections must be made by qualified personnel in accordance with local and national electrical codes and regulations.

Overcurrent protection is required to be provided by end product application per the supplied table.

Overcurrent protection may be provided with external fusing or via Current Limiting, Class 2 Power Supply.

Supply wiring leads < 24 AWG shall not be spliced.

For additional product support, go to www.bannerengineering.com.

Supply Wiring (AWG)	Required Overcurrent Protection (Amps)
20	5.0
22	3.0
24	2.0
26	1.0
28	0.8
30	0.5

For European applications, power this device from a Limited Power Source as defined in EN 60950-1.

Refer to CIE 1931 chromaticity diagram or color chart, to show equivalent color with indicated color coordinates.

MultiHop Radio with Internal Antenna Specifications

Radio Range § 900 MHz, 1 Watt: Up to 3.2 km (2 miles) with line of sight (internal antenna) 2.4 GHz, 65 mW: Up to 1000 m (3280 ft) with line of sight (internal antenna)

Antenna Minimum Separation Distance

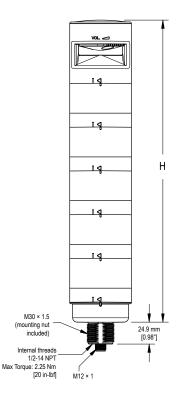
900 MHz, 150 mW and 250 mW: 2 m (6 ft) 900 MHz, 1 Watt: 4.57 m (15 ft) 2.4 GHz, 65 mW: 0.3 m (1 ft)

Radio Transmit Power

900 MHz, 1 Watt: 30 dBm (1 W) conducted (up to 36 dBm EIRP) 2.4 GHz, 65 mW: 18 dBm (65 mW) conducted, less than or equal to 20 dBm (100 mW) EIRP

Spread Spectrum Technology
FHSS (Frequency Hopping Spread Spectrum)

900 MHz Compliance (1 Watt)FCC ID UE3RM1809: FCC Part 15, Subpart C, 15.247 IC: 7044A-RM1809
IFT: RCPBARM13-2283


(NOM approval only applies to 900 MHz models)

(NOM approval only applies to 900 MHz models)

2.4 GHz Compliance (MultiHop)
FCC ID UE300DX80-2400: FCC Part 15, Subpart C, 15.247
Radio Equipment Directive (RED) 2014/53/EU
IC: 7044A-DX8024
ANATEL: 15966-21-04042 Este equipamento não tem direito à proteção contra interferência prejudicial e não pode causar interferência em sistemas devidamente autorizados. Para maiores informações, consulte o site da ANATEL www.gov.br/

Radio Packet Size (MultiHop) 900 MHz: 175 bytes (85 Modbus registers) 2.4 GHz: 75 bytes (37 Modbus registers)

Dimensions

Model	Height (H)
1 light module	87.6 mm (3.45 in)
1 light module, 1 audible module	144.3 mm (5.68 in)
2 light modules	137.3 mm (5.41 in)
2 light modules, 1 audible module	194 mm (7.64 in)
3 light modules	187 mm (7.36 in)
3 light modules, 1 audible module	243.7 mm (9.59 in)
4 light modules	236.7 mm (9.32 in)
4 light modules, 1 audible module	293.4 mm (11.55 in)
5 light modules	286.4 mm (11.28 in)
5 light modules, 1 audible module	343.1 mm (13.5 in)

Accessories

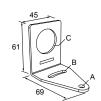
Cordsets

5-Pin Threaded M12 Cordsets—Single Ended					
Model	Length	Style	Dimensions	Pinout (Female)	
MQDC1-501.5	0.5 m (1.5 ft)			_ ^	
MQDC1-506	2 m (6.5 ft)		la 44 Tun	1 2	
MQDC1-515	5 m (16.4 ft)		44 Typ.	3	
MQDC1-530	9 m (29.5 ft)	Straight	M12 x 1	1 = Brown 2 = White 3 = Blue 4 = Black 5 = Gray	

Range depends on the environment and decreases significantly without line of sight. Always verify your wireless network's range by performing a Site Survey.

5-Pin Threaded M12 Cordsets—Single Ended					
Model	Length	Style	Dimensions	Pinout (Female)	
MQDC1-506RA	2 m (6.5 ft)				
MQDC1-515RA	5 m (16.4 ft)		32 Typ.		
MQDC1-530RA	9 m (29.5 ft)	Right-Angle	(1.26") 30 Typ. (1.18") 6 14.5 [0.57"]		

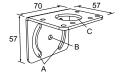
8-Pin Threaded M12 Cordsets with Open-Shield—Single Ended				
Model	Length	Style	Dimensions	Pinout (Female)
MQDC2S-806	2.04 m (6.7 ft)			
MQDC2S-815	5.04 m (16.54 ft)		44 Typ. ———	2 3 1 2 3 4 7 5 5
MQDC2S-830	10.04 m (32.95 ft)			
MQDC2S-850	16 m (52.49 ft)	Straight	M12 x 1 — Ø 14.5 —	
MQDC2S-806RA	2 m (6.56 ft)			6 — 6
MQDC2S-815RA	5 m (16.4 ft)		32 Typ. [1.26"] 30 Typ. [1.18"] M12 x 1	1 = White 2 = Brown 3 = Green 4 = Yellow 5 = Gray 6 = Pink 7 = Blue 8 = Red
MQDC2S-830RA	10 m (32.81 ft)			
MQDC2S-850RA	16 m (52.49 ft)	Right-Angle		


Mounting Brackets

All measurements are listed in millimeters, unless noted otherwise.

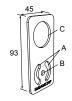
SMB30A

- Right-angle bracket with curved slot for versatile orientation Clearance for M6 (¼ in) hardware Mounting hole for 30 mm sensor 12-ga. stainless steel


Hole center spacing: A to B=40 **Hole size:** A=Ø 6.3, B= 27.1 x 6.3, C=Ø 30.5

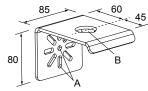
SMB30MM

- 12-ga. stainless steel bracket with curved mounting slots for versatile orientation Clearance for M6 (¼ in) hardware Mounting hole for 30 mm sensor


Hole center spacing: A = 51, A to B = 25.4Hole size: $A = 42.6 \times 7$, $B = \emptyset 6.4$, $C = \emptyset 30.1$

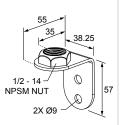
SMBAMS30P

- Flat SMBAMS series bracket 30 mm hole for mounting sensors Articulation slots for 90°+ rotation 12-ga. 300 series stainless steel


Hole center spacing: A=26.0, A to B=13.0 **Hole size:** A=26.8 x 7.0, B= \emptyset 6.5, C= \emptyset 31.0

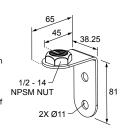
SSA-MBK-EEC1

- Single 30 mm hole
- 8 gauge steel, black finish (powder coat)
- Front surface for customer applied labels


Hole size: $A = \emptyset 7$, $B = \emptyset 30$

LMBE12RA35

- Direct mounting of stand-off pipe, with common bracket type
- Zinc-plated steel
- Mounting distance from the wall to the center of the 1/2-14 NPSM NUT the 1/2-14 NPSM nut is 35 mm ter spacing: 20.0


Hole center spacing: 20.0

LMBE12RA45

- Direct mounting of stand-off pipe, with common bracket type
- Zinc-plated steel
- 1/2-14 NPSM nut
- Mounting distance from the wall to the center of the 1/2-14 NPSM nut is 45 mm

 Hole center spacing: 35.0

Elevated Mount System

Model			Features	Components
SA-M30 - Black Polycarbonate SA-M30C - Gray Polycarbonate			Streamlined black PC or Gray PC thread cover Covers M30 thread on the light base Mounting hardware included	
Polished 304 Stainless Steel	Black Anodized Aluminum	Clear Anodized Aluminum		4 6
SOP-E12-150SS 150 mm (6 in) long	SOP-E12-150A 150 mm (6 in) long	SOP-E12-150AC 150 mm (6 in) long	Elevated-use stand-off pipe (½ in. NPSM/DN15) Polished 304 stainless steel, black anodized aluminum, or	
SOP-E12-300SS 300 mm (12 in) long	SOP-E12-300A 300 mm (12 in) long	SOP-E12-300AC 300 mm (12 in) long	clear anodized aluminum surface ½ in. NPT thread at both ends	
SOP-E12-900SS 900 mm (36 in) long	SOP-E12-900A 900 mm (36 in) long	SOP-E12-900AC 900 mm (36 in) long	Compatible with most industrial environments	
SA-E12M30 - Black Acetal			Streamlined black acetal or white UHMW mounting base	0
SA-E12M30C - White UHMW			adapter/cover Connects between ½ in. NPSM/DN15 pipe and 30 mm (1-3/16 in) drilled hole Mounting hardware included	

Pipe Mounting Flange					
Model	Features	Construction			
SA-F12	Elevated-use stand-off pipes (½ in, NPSM/DN15) M5 mounting hardware and nitrile gasket included	Die-cast zinc base with black paint	1/2-14 NPSM 4x ø5.5 028 070		
SA-F12-3	Elevated-use stand-off pipes (½ in, NPSM/DN15) M4 mounting hardware and nitrile blend gasket included included	Black Polycarbonate	1/2-14 NPSM 2 x 120 e40		

Foldable Mounting Brackets					
Model	Features	Construction			
SA-FFB12		Black polycarbonate			
SA-FFB12C	 For use with 1/2 inch stand-off pipes Stainless steel hardware 	Gray polycarbonate	070 4 x 05		

LMB Sealed Right-Angle Bracket

Model	Description	Construction	
LMB30RA		Black polycarbonate	
LMB30RAC	Direct-Mount Models: Bracket kit with base, 30 mm adapter, set screw, fasteners, O-rings, and gaskets.	Gray polycarbonate	
LMBE12RA		Black polycarbonate	
LMBE12RAC	Plpe-Mount Models: Bracket kit with base, ½-14 pipe adapter, set screw, fasteners, O-rings, and gaskets. For use with stand-off pipe (listed and sold separately).	Gray polycarbonate	

Banner Engineering Corp. Limited Warranty

Banner Engineering Corp. warrants its products to be free from defects in material and workmanship for one year following the date of shipment. Banner Engineering Corp. will repair or replace, free of charge, any product of its manufacture which, at the time it is returned to the factory, is found to have been defective during the warranty period. This warranty does not cover damage or liability for misuse, abuse, or the improper application or installation of the Banner product.

THIS LIMITED WARRANTY IS EXCLUSIVE AND IN LIEU OF ALL OTHER WARRANTIES WHETHER EXPRESS OR IMPLIED (INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE), AND WHETHER ARISING UNDER COURSE OF PERFORMANCE, COURSE OF DEALING OR TRADE USAGE.

This Warranty is exclusive and limited to repair or, at the discretion of Banner Engineering Corp., replacement. IN NO EVENT SHALL BANNER ENGINEERING CORP. BE LIABLE TO BUYER OR ANY OTHER PERSON OR ENTITY FOR ANY EXTRA COSTS, EXPENSES, LOSS OF PROFITS, OR ANY INCIDENTAL, CONSEQUENTIAL OR SPECIAL DAMAGES RESULTING FROM ANY PRODUCT DEFECT OR FROM THE USE OR INABILITY TO USE THE PRODUCT, WHETHER ARISING IN CONTRACT OR WARRANTY, STATUTE, TORT, STRICT LIABILITY, NEGLIGENCE, OR OTHERWISE.

Banner Engineering Corp. reserves the right to change, modify or improve the design of the product without assuming any obligations or liabilities relating to any product previously manufactured by Banner Engineering Corp. Any misuse, abuse, or improper application or installation of this product or use of the product for personal protection applications when the product is identified as not intended for such purposes will void the product warranty. Any modifications to this product without prior express approval by Banner Engineering Corp will void the product warranties. All specifications published in this document are subject to change; Banner reserves the right to modify product specifications or update documentation at any time. Specifications and product information in English supersede that which is provided in any other language. For the most recent version of any documentation, refer to: www.bannerengineering.com.

For patent information, see www.bannerengineering.com/patents.

Notas Adicionales

Información México: La operación de este equipo está sujeta a las siguientes dos condiciones: 1) es posible que este equipo o dispositivo no cause interferencia perjudicial y 2) este equipo debe aceptar cualquier interferencia, incluyendo la que pueda causar su operación no deseada.

Banner es una marca registrada de Banner Engineering Corp. y podrán ser utilizadas de manera indistinta para referirse al fabricante. "Este equipo ha sido diseñado para operar con las antenas tipo Omnidireccional para una ganancia máxima de antena de 6 dBd y Yagi para una ganancia máxima de antena 10 dBd que en seguida se enlistan. También se incluyen aquellas con aprobación ATEX tipo Omnidireccional siempre que no excedan una ganancia máxima de antena de 6dBd. El uso con este equipo de antenas no incluidas en esta lista o que tengan una ganancia mayor que 6 dBd en tipo omnidireccional y 10 dBd en tipo Yagi, quedan prohibidas. La impedancia requerida de la antena es de 50 ohms."

Antenas SMA	Modelo	Antenas Tipo-N	Modelo
Antena, Omni 902-928 MHz, 2 dBd, junta de caucho, RP-SMA Macho	BWA-902-C	Antena, Omni 902-928 MHz, 6 dBd, fibra de vidrio, 1800mm, N Hembra	BWA-906-A
Antena, Omni 902-928 MHz, 5 dBd, junta de caucho, RP-SMA Macho	BWA-905-C	Antena, Yagi, 900 MHz, 10 dBd, N Hembra	BWA-9Y10-A

Mexican Importer

Banner Engineering de Mèxico, S. de R.L. de C.V. David Alfaro Siqueiros 103 Piso 2 Valle oriente San Pedro Garza Garcia Nuevo Leòn, C. P. 66269

81 8363.2714

ANATEL

Modelo (Model): DX80-2400 —Este equipamento não tem direito à proteção contra interferência prejudicial e não pode causar interferência em sistemas devidamente autorizados. Para maiores informações, consulte o site da ANATEL www.gov.br/anatel/pt-br/

